
1

Shilpa Rao
Work @ Arc Boats

2

Arc Boats

Automated
Battery Tests

800v
226 kWh

3

Arc Boats:
Scope

Verify no electrical
or mechanical
errors before
battery is sealed
and ready for the
water.

Context: end of Q3
production sprint,
first customer boat

Sr EE
responsibilities

4

Arc Boats:
Automated Battery Tests

Hipot:

Check for leakage or
shorts between
insulated
components using
high transient current

Precharge:

Precharge contactor
closes and BMS
returns pass/fail
condition

Pack charge:

Charge pack until 1%
SOC increase is
achieved

01 02 03

BMS check:

Verify accurate
voltages / leak
boolean /
temperatures etc
over CAN

04

Deliverables

5

Arc Boats:
Automated Battery Tests

Hipot:

Check for leakage or
shorts between
insulated
components using
high transient current

Precharge:

Precharge contactor
closes and BMS
returns pass/fail
condition

Pack charge:

Charge pack until 1%
SOC increase is
achieved

01 02 03

BMS check:

Verify accurate
voltages / leak
boolean /
temperatures etc
over CAN

04

Results
Automated Automated Automated50%

automated

APC  Rockseed power supplies

HypotULTRA 7850

ITech IT6000C

Test Rack CAN Communications Rack
Linux PC
Control VCU

● Tricked BMS into thinking it's in a boat
○ Allowed precharge, pack charge

● Used extra Ecotron VCU to command BMS states not otherwise
allowed

● Used VCU GPIO to control HypotUltra 7850
● Customized proprietary Python and OpenHTF framework

○ Primary product from controls team = linux .exe that runs
entire boat operations from VCU

● Delivered Linux executable using VCU for custom battery tests
● Laid groundwork for better testing collaboration between

teams (control, mech, EE
○ VCU kept in loop means more upkeep by controls team
○ VCU firmware has to match BMS revisions
○ Supports modularity - test BMS as it evolves

Test Rack:
simulating a boat

Hipot Test
Why hipot?

● Dielectric withstand test ensures no
current will flow between two
disconnected points

● ISO 6469 standard
● Toshiba resource on EV withstand

test
○ Test Voltage = 1.41 * 2U +

1000 Vrms) where U  800v
(operating voltage)

○ Test Voltage = 3,666 volts DC
for 1 minute

● Captures transient spikes /
switching events at 23x nominal
voltage

TEST CASE RETURNING INFO

DCLink + to Case GND [Ω] Pass/Fail/Processing

DCLink - to Case GND [Ω] Pass/Fail/Processing
DCLink + to DCLink - [Ω] Pass/Fail/Processing
DCFC + to Case GND [Ω] Pass/Fail/Processing
DCFC - to Case GND [Ω] Pass/Fail/Processing
DCFC + to DCFC - [Ω] Pass/Fail/Processing

https://toshiba.semicon-storage.com/info/application_note_en_20210526_AKX00734.pdf?did=70923&utm_source=chatgpt.com
https://toshiba.semicon-storage.com/info/application_note_en_20210526_AKX00734.pdf?did=70923&utm_source=chatgpt.com

Hipot Test
1. Interface with battery = manual
2. Voltage output trigger = automated (human-in-loop)
3. Recording results= automated

● Initial vision: contactors auto switching
between battery ports

● Reason for halfway automation
○ Risk of high voltage short if

contactor failure; no time to test
○ Result: technician places HV

alligator clips on battery
● Linux PC runs pre-set test. Records

results from DB9 connector on Hipot
○ Uses vehicle control unit VCU high

side outputs HSO) to command
switches

○ VCU 12v digital inputs

Assumes you have an operational Linux PC and
access to the Arc Boats automated-atp git repository.

1. Turn Hipot meter on (bottom left button). Press
"OK".

2. On Linux PC, run main.py by running:
a. shilpa@shilpa-ThinkPad-T14-Gen-3

:~/Desktop/automated-atp/test-ru
nner$ poetry run python3
./test_runner/battery_checkout/m
ain.py

3. Check work instructions. Move alligator clips,
then proceed through each phase of test
accordingly.

Hipot Test
Final product

● Battery charged via ACDC rectifier. Load = inverter/motor.
● Precharging controls the current increase across DCLink cap.

○ DCLink cap: "for filtering the switching ripple on the DC
bus"

● Requirement by BMS. Charging not allowed otherwise.
● Code already completed by controls team.
● My scope: command precharge test over CAN

○ Repurposed complex controls code
○ Hacked VCU to fake "VCU heartbeat" and allow pre-charge

to continue

Precharge Test

Source: Texas Instruments

Precharge RC circuit
controls charge
buildup on capacitor

https://ieeexplore.ieee.org/abstract/document/6966638
https://www.ti.com/lit/ab/slvafb0/slvafb0.pdf?ts=1747163073627

BMS check
● Implemented prior by controls team
● I used hacked VCU to access those

signals
○ Recall: BMS expected some

preprogrammed VCU logic to enable
precharge and deliver signals

● My API checked each signal against
expected values

● Output from Linux .exe →

Pack Charge Test
● Trial and error:

○ Pack voltage determined from
BMS readings

○ Charge voltage set to
1.2 x pack voltage

○ Pack charged at State of
Charge SOC 0.51% increase
per 20 minutes (slower = safer)

● Automated iTech IT6000C Power
Supply over CAN - previously tried
and failed by sr engineers

● Set power supply to CC (constant
current) mode due to low SOC.

Pack Charge Test
● Two problems with CAN DBC

○ 1 Power supply address encoded in
all signals.

■ Incorrect address assumed in
DBC, meaning no information
sent.

○ 2 Vendor-provided DBC missing
SDO_CCS signal inside SDO_Server.

■ Required to enable remote
control of machine

■ CAN messages from power
supply contained 8 signals
(bytes) carrying info, but
Vendor DBC only mentioned 7
signals

● 2 other engineers had tried and failed to
remotely control these power supplies.

● Replaced $10k/license vendor software

Source: Kvaser

https://kvaser.com/can-protocol-tutorial/

Testing final solution
● "Checked out" test battery 4 times in

last 2 weeks of internship
○ Identified common operation

errors
○ Mostly Linux / CAN based

● Put together work instructions with
troubleshooting guidance

● This slide shows 2 excerpts from work
instructions with my learnings

If you get this error,
check to make sure
that you’ve plugged in
a PeakCAN device to
a port on the laptop.
This code will not
work with Kvaser or
Vector (etc).

If you get this error, make sure that
the function CANPLug (in plugs.py)
only declares one CAN line, labeled
[CAN1].

Make sure that the command
setup-can in the Makefile
(/home/shilpa/Desktop/automated-
atp/test-runner/Makefile) sets the
baudrate to 500000. This differs
from the boat - the boat requires
the first CAN line to be 250000 as
it talks to the VCU.

● Mentor left midway through internship 7
EEs → 6 EEs)

● I was the only engineer left w/ up-to-date
battery test knowledge

● First customer boat production sprint
● Handoffs to Manufacturing lead + lead EE

● Learned to be rigorous with vendor
information

● No question is dumb
● First principles are important

Senior EE responsibility
as an intern

Incorrect vendor data

HVIL signal drop during
production handoff

● Collaborated with mechanical team to
diagnose issue and unblock boat
production

● Mechanical, production or electrical issue?
○ All 3: over-torqued PCB stud

Roadblocks: technical / behavioral

