Reinventing the Modern Endoscopy: Safer Wireless Methods

Shilpa Rao UCLA Anatomical Engineering Group

Problem Statement

- Modern endoscopy methods are highly invasive
 - Anaesthesia
 - Operating Room procedure
 - Risky for patients over 60
- Wireless methods are passive, no locomotion control
- Stereotaxis Niobe is bulky, MRI like, hard to move.

Our Solution

Main Questions

- 1. Can we safely locomote the capsule without tearing the esophagus wall?
- 2. How do magnetic fields affect the body?
- 3. Can we control the capsule's position reliably?
- 4. Can we disrupt current endoscopy methods by developing a safer, quicker procedure?

Methods

- 1. Electromagnetic modeling in JMAG
- 2. Choose an appropriate neck model size
- 3. Mold a model neck & esophagus in silicone, include force sensors
- 4. Choose hardware: motor driver, current sensor, microcontroller, force sensors
- 5. Design control loop inputs
 - a. Position control
 - b. Current control
 - c. Force control
- 6. Tune control loop

Neck Size vs Force (Modeling in JMAG)

*All data collected for a 4 inch electromagnet.

Experimental Setup

Control Architecture

Motor **Driver**

David Geffen School of Medicine

Control Architecture

MID LEVEL (training only): force sensors are used ensure that system acts safely.

MID LEVEL: Teensy 4.1 uses position input to make sure it's going to the right place.

LOW LEVEL: current sensor on motor driver.

Force Consistency

Consistent, repeatable relationship to increased PWM

Sensor Drift Over Time

Force Consistency: a closer look

Sensor 3 0.2 0.1

Normalized Force Readings vs. Time

Sensor 1 placed

electromagnet

closest to

14:15:40 14:15:41 14:15:42 14:15:43 14:15:44 14:15:45 14:15:45 14:15:45 14:15:56 14:15:57 14:15:58 14:15:59 14:15:59 14:15:50 14:15:51 14:15:51 14:15:51 14:15:54 14:15:54 14:15:54 14:15:57 14:15:57 14:15:58 14:15:59 14:15:59 14:15:50 14:15:51 14:1

Maximum Operational Distance: 8 inches from esophagus

	Sensor 1	Sensor 2	Sensor 3	Sensor 4
No current (control values)	0.66	0.59	0.53	0.52
2 inches	3.53	1.3	0.41	1.58
4 inches	1.22	0.91	2.1	2.53
8 inches	0.77	1.71	1.01	0.45
10 inches	0.67	0.58	0.61	0.52

10 inch difference ~= control

Demo

Future Directions

- With hobbyist hardware (~\$600 budget), we can achieve pretty good control, and act at a reasonable distance from the body.
- Magnetic position tracking using hall effect sensors would be complex, but has been done before.
 - Magnetomicrometry (Taylor et al, MIT Media Lab)
- Electromagnetically guided release of capsule from edge of esophagus to rest position (to dampen momentum)
- Develop capsule communication electronics: standard camera, biopsy mechanism.
- Business model: this solution is safer, quicker, and potentially cheaper.
 - Less material in body
 - Portable device

